Binding Affinity of Novel Cyclodextrin Dimers to Ethyl Orange

Le Xin SONG*

Department of Chemistry, University of Science and Technology of China, Hefei 230026

Abstract: The interaction between ethyl orange (Eto, guest) and β -cyclodextrin dimers (**1a~d**, host) bridged with 2-*t*-butoxycarbonyl(Boc)-amino diacid was investigated. A remarkable synergic complexation of two cavities in host molecule was observed.

Keywords: β-Cyclodextrin. inclusion compound. amino acid.

Cyclodextrins (CDs) have attracted increasing attention of many chemists since their striking characteristics of specific binding and inclusion^{1~3}. Very recently, we reported the interaction between small peptide derivatives and some CD dimers labeled with isothiocyanate fluorescein by fluorescence polarization method⁴. In order to further realize the inclusion behavior of a double CD to large organic substrates and evaluate the structure effect of bridging components in host during host-guest binding, we synthesized the novel CD-amino diacid (Amda) conjugates, Boc-Glu(NH- β -CD)₂ **1a**, Boc-Asp(NH- β -CD)₂ **1b**, Boc-Acbd(NH- β -CD)₂ **1c** and Boc-Acpd(NH- β -CD)₂ **1d** as host molecules (**Figure 1**, Glu, Asp, Acbd and Acpd are the abbreviation of glutamic acid, aspartic acid, 1-amino-cyclobutanecis-1,3-dicarboxylic acid and 1*R*, 3*R*-1-amino-cyclopentane-*cis*-1,3-dicarboxylic acid respectively), and examined their bonding affinity to ethyl orange by absorption spectra.

Reagents and conditions: a. 6 equiv. *t*-methylbenzenesulfonyl chloride, ice water of 0.4 molL⁻¹ NaOH, 1 h, yield, 27%; b. 11 equiv. NaN₃, H₂O (50 mL), 80°C, 5 h, yield, 56%; c. 0.5 equiv. Boc-Amda, 1.4 equiv. *N*-hydroxy-perrolidine-2, 5-dione, 1.2 equiv. diisopropylcarbodiimide, DMF (15.4 mL), CH₂Cl₂ (0.4 mL), 93 h, 25°C, yield, 41%.

^{*}E-mail: solexin@netra.nju.edu.cn

Le Xin SONG

Boc-Amda was prepared from amino diacid and 3 equiv. triethylamine in water (6 mL) by treatment with 1 equiv. 2-*t*-butoxycarbonyloxyimino-2-phenylacetonitrile in 6 mL 1,4-dioxane at room temperature for 4 h. The yield is moderate (*ca.* 60% from amino acid). The β -CD dimers, Boc-Amda(NH- β -CD)₂ 1, was obtained according to the route outlined as above.

Mono-6-NH₂-6-deoxy- β -CD was used as the starting material for β -CD dimer. The crude product after washing thoroughly with saturated brine was purified by column chromatography to give pure **1**. It was dried to constant weight and stored over P₂O₅ under vacuum. TLC (water-ethyl acetate-isopropanol, 3:4:5) showed a single spot (**Table 1**).

In order to survey the binding ability, ethyl orange was employed as a guest. The host-guest binding was monitored by absorption spectra around 471 nm in phosphate buffer (pH 7.40) at 25°C. With increase the host concentration, the peak of absorption spectra shifted from 475 nm to 461 nm and a strong increase in absorption was observed. The association ratios were determined to be 1:1 by Job's treatment⁵ of the difference spectra. The Benesi-Hilderbrand plot⁶ gave a straight line in the concentration range of 1 from 4.50×10^{-5} to 2.00×10^{-4} mol L⁻¹ at a concentration of 1.00×10^{-5} mol L⁻¹ of ethyl orange. The binding constants for the complexation of ethyl orange by $1a \sim d$ was presented in Table 1.

 Table 1 The characterization of hosts and the binding constants of host-guest

Host	Yield (%)	R_{f}	Anal. Calcd for 1.2H ₂ O (Found)			Binding Affinity to Eto
			С	Н	Ν	$K_b / \mathrm{mol}^{-1}\mathrm{L}$
1a	27	0.72	44.89(44.65)	6.32(5.77)	1.67(1.82)	$(4.20\pm0.45)\times10^4$
1b	39	0.80	44.66(44.52)	6.33(6.05)	1.68(1.84)	$(6.61\pm0.38)\times10^4$
1c	41	0.69	45.15(45.01)	6.34(6.23)	1.66(1.44)	$(1.50\pm0.20)\times10^{5}$
1d	34	0.63	45.37(45.19)	6.38(5.65)	1.65(1.79)	$(2.30\pm0.25)\times10^5$

The values of K_b are significantly greater with a double β -CD (>4.20×10⁴ mol⁻¹L) as a host compared to β -CD (6.55×10² mol⁻¹L) or to a capped β -CD such as Boc-alanine(NH- β -CD) (1.22×10³ mol⁻¹L). This leads to a conclusion that two neighboring CD cavities of a dimer may act effective cooperation during host-guest recognition if there is a suitable fit between the double CD and guest components.

It had been found in comparison between the bonding constants of Eto with two hosts, Boc-Acbd(NH- β -CD)₂ (1.50 × 10⁵ mol⁻¹L) and Acbd(NH- β -CD)₂ (2.06 × 10⁵ mol⁻¹L) that the large Boc group in host molecule did not perform an act of obvious interference during host-guest interaction. As shown in the **Table** the structure of the bridge between the CD dimers did not seem play very important role in the binding constant of the host and guest complexation.

References

- 1. L. X. Song, Z. J. Guo, Chin. J. Inorg. Chem., 2001, 17, 9; 457.
- 2. K. Harata, L. X. Song, H. Morii, Supramol. Chem., 2000, 11, 217.
- L. X. Song, Q. J. Meng, X. Z. You, J. Organomet. Chem., 1995, 498, C1; Acta Chimica Sinica, 1996, 54, 777.
- 4. L. X. Song, Chin. Chem. Lett., 2001, 12, 119; Acta Chimica Sinica, 2001, 59, 1201.
- 5. P. Job, Ann. Chim. Phys., 1928, 9, 113.
- 6. H. A. Benesi, H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.

Received 17 January, 2002